Stability of Transgenic Resistance Against Plant Viruses

نویسنده

  • Nikon Vassilakos
چکیده

Plant viruses constitute one of the main problems of the agricultural production worldwide (Kang et al., 2005). To date, there are not therapeutical measures available for the control of plant-virus diseases in the field and the main control strategy used in practice is based on prevention measures. Genetic resistance is by far the most effective way to control plant viruses. However, ‘traditional’ genetic sources of resistance to viruses are rare (Lecoq et al., 2004) and due to the high rate of mutation of the viral genomes this resistance even when applicable, is frequently broken under field conditions. The era of Agrobacterium-mediated genetic transformation of plants which started at the 80s (Thomashow et al., 1980; Zambryskiet al., 1980) offered new promising prospects for engineered genetic resistance to viruses with numerous following studies reporting a successful use of the transgenic technology against almost all genera of plant viruses or even viroids (Lin et al., 2007; Prins et al., 2008; Ritzenthaler, 2005; Schwind et al., 2009). However, mainly due to public concerns for the safety of using transgenic plants in agriculture only in a relatively small number of virus diseases transgenic technology has been used in the field and in these cases it was proved an efficient and safe way of control (Fuchs et al., 2007). The mechanism of resistance in the vast majority of the applications of transgenic-plant strategy is based on RNAsilencing. RNA-silencing is a sequence specific RNA degradation mechanism, highly conserved between kingdoms, which in plants, among other functions, operates as a natural antiviral defense system (Eamens et al., 2008). The role of RNA-silencing as an antiviral weapon has been further supported by the fact that almost every known plant virus species encodes for at least one protein with RNA-silencing suppression activity (Dıaz-Pendon & Ding, 2008). This knowledge raised the first concerns regarding the efficiency of RNAsilencing based resistance against viruses under field conditions. As silencing is sequence specific, the resistance of transgenic plants engineered to be resistant to typically one virus could be broken by a different, heterologous virus that could infect the plants in the field. The hypothesis was that the heterologous virus through its silencing suppressor protein(s) could repress the RNA silencing machinery of the plant as a whole, resulting in the loss of the initially engineered resistance. In addition, the extensive research on RNA-silencing that is going on for over a decade has revealed a number of environmental and plant physiological factors that can influence the silencing mechanism and consequently the effectiveness of RNA-silencing based transgenic resistance to viruses under field conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Stability of Chitinase Gene in Transgenic Offspring of Cotton (Gossypium hirsutum)

Cotton cultivar Coker has been already transformed with recombinant pBI121-chi via Agrobacterium tumefaciens. The T-DNA region of pBI121-chi carries the chitinase (chi ) gene from bean and is under the control of the CaMV35S promoter. T1 and T2 progenies of transgenic cotton containing the chi gene were used in this study.  Polymerase chain reaction (PCR), Southern and Western blotting data con...

متن کامل

Transient expression of coding and non-coding regions of PVY confer resistance to virus infection

One of the most efficient mechanisms by which plants protect themselves from invading virusesis the specific RNA-dependent silencing pathway termed post-transcriptional gene silencing(PTGS). In this mechanism, resistance to a virus is engineered through the expression of asegment of the virus genomein transgenic plants. Potato VirusY (PVY) is one of the mostdamaging viruses of potato, infecting...

متن کامل

Agrobacterium-Mediated Transformation of the Oryza sativa Thaumatin-Like Protein to Canola (R Line Hyola308) for Enhancing Resistance to Sclerotinia sclerotiorum

Background: Canola is an agro-economically oilseed crop. Yield loss due to fungal disease of stem rot caused by Sclerotinia sclerotiorum is a serious problem in canola cultivation. Thaumatin-like proteins are large groups of the pathogenesis-related proteins which provide resistance to the fungal infection in response to invading pathogens and play a key role in plant defense s...

متن کامل

Plant Resistance to Virus Diseases through Genetic Engineering: Can a Similar Approach Control Plant-parasitic Nematodes?

Genetically engineered resistance against plant virus diseases has been achieved by transforming plants with gene constructs that encode viral sequences. Several successful field trials of virus-resistant transgenic plants have been carried out. Specific features of virus infection make it possible to interfere with different steps of the infection and disease cycle by accumulating products of ...

متن کامل

Agrobacterium-mediated Transformation of Cotton (Gossypium hirsutum) Using a Synthetic cry1Ab Gene for Enhanced Resistance Against Heliothis armigera

Cotton (Gossypium hirsutum L.)  is an important fiber crop in Iran, cultivated on 150000-200000 ha of land.  In Iran the estimated loss due to the insect pest is more than 30%. Traditionally, pests are controlled by 10-12 times spraying per growing season of environmentally harmful chemical insecticides (e.g. endosulfan and/or methosystox). In order to produce transgenic cotton resistance to in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012